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Dinuclear titanium(IV) complex of p-tert-butylthiacalix[4]arene
as a novel bidentate Lewis acid catalyst
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Abstract—Treatment of p-tert-butylthiacalix[4]arene (H4L, 2) with TiCl4 in dichloromethane gave two novel dinuclear titaniu-
m(IV) complexes formulated as [Ti2LCl4]. One of the complexes was subjected to X-ray crystallographic analysis to show that the
calixarene ligand (L4−) adopted a cone conformation, forcing the two metal centers to reside in close vicinity with syn arrangement
with respect to the mean plane defined by the macrocycle (3). The other one was assigned to be an anti titanium(IV) complex (4)
based on 1H NMR spectroscopy. The syn complex showed high catalytic activity in the Mukaiyama–aldol reaction of aromatic
aldehydes with silyl enol ethers, indicating the double-activation ability of the bidentate Lewis acid toward the aldehydes. © 2002
Elsevier Science Ltd. All rights reserved.

Polynuclear metal complexes have attracted much inter-
est in the field of metal catalysis.1 The metal centers
located close in such complexes may activate substrate
molecule(s) cooperatively or simultaneously, and/or
migrate the substrate between the metal centers, which
cannot be realized by mononuclear metal complexes.
Therefore, polynuclear complexes are expected to show
special catalysis or high performance in catalytic activ-
ity. Recently, we have introduced new members of
calix[4]arenes, in which the four methylene bridges of
calix[4]arene (e.g. 1) are replaced by epithio (e.g. 2),
sulfinyl or sulfonyl linkages.2,3 They show marked abil-
ity to form metal complexes without the need to modify
the upper and/or lower rim, as is the case for the
conventional calix[4]arenes.4 This is attributed to the
ligation of the sulfur-based functionalities to a metal
center in cooperation with the phenoxy oxygens, as
revealed by solvent extraction studies5 and X-ray crys-
tallographic analyses.6

Furthermore, the sulfur-based calix[4]arenes can form
not only mono- but also polynuclear metal complexes
by virtue of the heterogeneous coordination sites.6,7

Therefore, our attention has been focused on designing
polynuclear metal complexes of the sulfur-based
calix[4]arenes, which should be suitable for metal cata-
lysts.8 As a part of such efforts, we report, herein, the
synthesis of dinuclear titanium(IV) complexes (3,4) of
p-tert-butylthiacalix[4]arene (2) and the application of
the former as a bidentate Lewis acid catalyst for the
Mukaiyama–aldol reaction.9,10

Reaction of thiacalixarene 2 with an excess of TiCl4 in
dichloromethane led to the formation of two complexes
3 and 4, the latter being essentially insoluble in the
solvent (Scheme 1).11 Fortunately, diffusion of hexane
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Scheme 1.

Figure 2. Partial 1H NMR spectra of thiacalixarene 2 in
CD2Cl2 on progressive addition of TiCl4. (a) R=[TiCl4]/[2]=
4, (b) R=2, (c) R=1, (d) R=0, where [2]=6.3 mmol dm−3.

to a solution of complex 3 in dichloromethane under
nitrogen gave single crystals, one of which was sub-
jected to X-ray crystallographic analysis (Fig. 1).12 The
complex consisted of two titanium ions, a tetraanion of
thiacalixarene (L4−), four chlorine ions and an aqua
ligand to form [Ti2LCl4(H2O)]. Although the operation
proceeded under nitrogen, the water molecule seemed
to have been introduced to the complex during recrys-
tallization, showing the high oxophilicity of complex 3
(vide infra). The L4− ligand adopted a cone conforma-
tion and coordinated to each metal ion in a tridentate
fashion via the two phenoxy oxygens and an epithio
function. Therefore, the two titanium ions occupied syn
positions with respect to the mean plane defined by the
macrocycle. The metal centers had a distorted octahe-
dral environment bridged by the water molecule, a C2

symmetry axis passing through the center of the cavity
of the L4− ligand.

In order to gain insight into the complexation behavior,
a 1H NMR titration experiment was carried out. In the
absence of TiCl4, the spectrum of thiacalixarene 2 in
dichloromethane-d2 showed three singlets correspond-
ing to tert-butyl, aromatic and hydroxy protons (Fig.
2d). As 2 mol equiv. of TiCl4 was added portionwise to
the solution of thiacalixarene 2, new signals, including
those assigned to complex 3, appeared (Fig. 2c). During
the time course, complex 4 was precipitated. On reach-
ing the molar ratio of TiCl4: 2 to 2:1, all the signals of
free ligand 2 disappeared and only the signals of com-
plex 3 were observed (Fig. 2b). Further increase in the
molar ratio did not cause any spectral change (Fig. 2a).
These observations may indicate that complexes 3 and
4 have a stoichiometry of Ti4+:2=2:1. Both complexes
showed the same pattern of 1H NMR peaks in THF-d8,
that is, one singlet assigned to tert-butyl and two
doublets to aromatic protons,11 which indicates that the
thiacalixarene ligand adopts a cone or 1,2-alternate

conformation,13 as long as the complexes are
monomeric. Complex 4 was, therefore, assumed to
adopt a 1,2-alternate conformation with an anti
arrangement of the two titanium ions based on the
titration study and the stereochemistry of complex 3.

The highly oxophilic nature of complex 3 was
attributed to simultaneous coordination of the oxygen
atom of a water molecule to the two titanium centers
exquisitely held by a thiacalixarene ligand, which
tempted us to examine the double-activation ability of
the complex toward carbonyl compounds in the
Mukaiyama–aldol reaction (Table 1).14 To our plea-
sure, the reaction of benzaldehyde with silyl enol ether
5 in the presence of 5 mol% of complex 3 proceeded
smoothly at −78°C to give �-hydroxy ketone 7 quanti-
tatively in 15 min (entry 1), while a control reaction
using complex 4 as a catalyst gave the product in only
2% yield (entry 2). The catalytic activity of complex 3
was clearly superior even to that of TiCl4 (entry 3).
These observations will indicate that complex 3 acts as
a bidentate Lewis acid, which strongly enhances the
reactivity of the aldehyde toward ether 5 via the double
electrophilic activation of the carbonyl moiety as
depicted in Fig. 3b,9 whereas TiCl4 and complex 4 act
as monodentate Lewis acid catalysts (Fig. 3a). Ether 5
was hydrolyzed in the presence of complex 3 at an
elevated temperature (0°C), which significantly reduced
the product yield (entry 4). Addition of powdered
molecular sieves (4 A� ) (MS4A) was crucial for obtain-
ing good results (entry 5), suggesting that the catalyst is
incompatible with a trace amount of incidental water in
the reaction system. Reaction of several other aromatic
aldehydes was conducted under the standard conditions
to give the corresponding hydroxy ketones 7 in yields
depending on the substituents on the aromatic ring
(entries 6–8, 10, 11 and 13). The steric bulk of the ortho

Figure 1. ORTEP drawing and schematic view of
[Ti2LCl4(H2O)] obtained by recrystallization of complex 3.
Hydrogen atoms are omitted for clarity.
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Table 1. Reaction of aldehydes with silyl enol ethers

Silyl enol etherEntry Lewis acid (mol%)Aldehyde Yield (%)a

1 5Benzaldehyde 3 (5.0) 93
5 4 (5.0) 22
5 TiCl4 (10)3 36
5 3 (5.0) 64b

5 3 (5.0) 615c

5 3 (5.0)4-Chlorobenzaldehyde 856
4-Methylbenzaldehyde7 5 3 (5.0) 88
2-Methylbenzaldehyde8 5 3 (5.0) 57

5 3 (5.0) 779d

2,6-Dimethylbenzaldehyde10 5 3 (5.0) 30
5 3 (5.0)1-Naphthaldehyde 5011
5 3 (5.0)12d 87
5 3 (5.0)2-Naphthaldehyde 9113

14 5Cinnamaldehyde 3 (5.0) 87
5 3 (5.0)3-Phenylpropanal 015
6 3 (5.0)16 95Benzaldehyde
6 3 (5.0)4-Chlorobenzaldehyde 9317

18 64-Methylbenzaldehyde 3 (5.0) 97
6 3 (5.0)1-Naphthaldehyde 9519

20 62-Naphthaldehyde 3 (5.0) 92

a Isolated yield.
b The reaction was conducted at 0°C for 2 h.
c MS4A was not added.
d The reaction was conducted at −78°C for 2 h.

Figure 3. Single (a) and double (b) electrophilic activation of
aldehyde by titanium Lewis acids.

In conclusion, we have shown here that p-tert-butylthi-
acalix[4]arene can be used as an efficient scaffold for
the construction of a dinuclear titanium(IV) complex,
in which two metal centers are located so closely as to
activate aldehydes doubly as a bidentate Lewis acid.
Further studies on the synthesis and catalytic applica-
tion of polynuclear metal complexes based on p-tert-
butylthiacalix[4]arene and its analogues are in progress.
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